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ABSTRACT 

Comparing TRMM Rainfall Retrieval 

with NOAA Buoy Rain Gauge Data. (December 2002) 

Amy Blackmore Phillips, B.S., University of Missouri 

Chair of Advisory Committee: Dr. Gerald North 

This study compares rain rate measurements from the Tropical Rainfall Measuring 

Mission (TRMM) satellite to rain rate measurements from rain gauges on open-ocean 

buoys. The rain gauges are part of the instrument package on the Next Generation 

Autonomous Temperature Line Acquisition System (ATLAS) buoys in the Tropical 

Atmosphere-Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON) array in the 

tropical Pacific. The rain rate data from TRMM and 25 buoys are collected from 

January of 1998 to December of 2001. TRMM's 3G68 product provides instantaneous 

rain rate data averaged over 0.5° x 0.5° latitude-longitude grid boxes for the TRMM 

Microwave Imager (TMI), Precipitation Radar (PR), and a combined algorithm 

(COMB). The buoy's rain rate data are averaged over and reported in 10-minute 

intervals.   Buoy data are compared to 1.0° x 1.0° TRMM area-averaged values centered 

on each of the 25 buoy locations. The 1.0° x 1.0° boxes are composed of four 0.5° x 

0.5° 3G68 grid boxes. 

The OVERLAP subset consists of all TRMM (TMI, PR and COMB) and buoy rain 

rate data from the observation period of January 1998 to December 2001. The MATCH 

dataset consists of only those 10-minute periods where both TRMM and the buoy data 
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are available. The rain rates from both subsets are averaged and compared to each other. 

Scatterplots are drawn, the best-fit line is determined, and the 95% confidence interval 

on the slope of the best-fit line is calculated. If the confidence interval contains 1.0, the 

two methods of measuring rain rates are not biased. This study shows that the 

confidence intervals for the OVERLAP and MATCH TMI versus buoy cases do contain 

1.0. The confidence intervals for the OVERLAP and MATCH PR versus buoy and 

COMB versus buoy cases, however, do not. 

This study concludes that TMI and the buoy rain rate measurements are unbiased and 

that the PR and COMB product underestimate rain rate as compared to the buoy. 
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CHAPTER I 

INTRODUCTION 

The region of the earth between 30°N and 30°S is defined as the Tropics. 

Seventy-five percent of the earth's surface area in the Tropics is ocean and two-thirds of 

the world's precipitation falls in the Tropics. Because the atmosphere receives three- 

fourths of its heat energy from latent heat released by precipitation, half of the earth's 

overall heat energy is due to tropical precipitation (Kummerow et al. 1998/ Large scale 

dynamics dictate that these energy releases associated with tropical precipitation events 

affect the entire global circulation pattern. 

It is important to be able to quantify the amount of precipitation that falls in a 

given area so that climate modelers understand where and how much heat is released 

into the atmosphere from tropical precipitation events. There are several observing 

systems that are used to measure rainfall, such as in situ rain gauges, satellite systems, 

and weather radars (Nystuen 1999J. 

Rain gauges are deployed on some deep ocean buoys, including the Next 

Generation Autonomous Temperature Line Acquisition System (ATLAS) buoys that 

comprise most of the Tropical Atmosphere-Ocean/TriangleTrans-Ocean Buoy Network 

(TAO/TRITON) array in the tropical Pacific Ocean. This array consists of 

approximately 70 Next Generation ATLAS and TRITON buoys between 8°S and 8°N, 

This thesis follows the style and format of the Journal of Climate. 



137°E to 95°W. The gauges used are KM Young Model 50203-34 capacitance-type rain 

gauges. There are 28 Next Generation ATLAS moorings in the TAO/TRITON 

array that have the RM Young capacitance rain gauges. The Pacific Marine 

Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric 

Administration (NOAA) is responsible for the development and maintenance of the 

buoys. Data from this buoy program have widespread application in research related to 

climate variability and ocean-atmosphere interaction (Serra et al. 2001). 

Moorings were deployed as part of the array beginning in November of 1984 and 

the TAO buoy array was completed in December of 1994.   At that time, the TAO array 

utilized Standard ATLAS moorings. The Next Generation ATLAS moorings were later 

developed primarily to improve upon the Standard ATLAS moorings by upgrading data 

quality, reducing cost, and adding new sensors, such as the rainfall sensor. The first 

Next Generation ATLAS mooring was deployed in May of 1996. In November of 2001, 

Next Generation ATLAS moorings replaced all Standard ATLAS moorings 

(http://www.pmel.noaa.gov/tao/proj_over/mooring.shtml). 

Next Generation ATLAS moorings can be deployed in water depths ranging 

from 1500 to 6000 m. Non-rotating wire rope is used from the surface to 700 m as a 

guard against fish bites. Plaited nylon line is used for the remainder of the mooring. 

The anchors weigh from 1900 to 2000 kg and are made from scrap railroad wheels. The 

buoy itself weighs 660 kg and has a net buoyancy of 2300 kg. It is a 2.3 m diameter 

fiberglass-over-foam toroid that has an aluminum tower as well as a stainless steel bridle 

(http://Mww.pmel.noaa.gov/tao/proj_over/mooring.shtml). 



In addition to rain gauges, satellites are another platform used to measure 

rainfall. Visible, infrared (IR), and microwave imagery have been used to provide 

estimates of rainfall. Visible and IR sensors only have the ability to measure cloud top 

temperature and other similar physical properties. Microwave radiation, on the other 

hand, interacts directly with the precipitating hydrometeors. It is in this sense that 

microwave measurements of rainfall are more physically based than either visible or IR 

measurements. 

The first microwave radiometer, the Electrically Scanning Microwave 

Radiometer (ESMR), was launched in 1972 as part of the payload on the Nimbus-5 

satellite to make global rainfall measurements. Since then, there have been many other 

missions that involve the microwave measurement of rainfall. The most recent mission, 

the Tropical Rainfall Measuring Mission (TRMM), was launched in November of 1997 

as a collaborative effort between the National Aeronautics and Space Administration 

(NASA) of the United States and the National Space Development Agency (NASDA) of 

Japan. The objective of TRMM is to measure rainfall and energy (i.e., latent heat of 

condensation) release of tropical and subtropical regions of the world (Kummerow et al. 

1998). 

The TRMM satellite is in a circular orbit 350 km above the earth and is oriented 

at a 35° inclination angle with respect to the equatorial plane. TRMM has three 

instruments that measure rainfall: the TRMM Microwave Imager (TMI), the 

Precipitation Radar (PR), and the Visible and Infrared Radiometer System (VIRS). This 

study focuses on rain rate measurements derived from TMI and PR separately, as well as 



values derived from a combined algorithm (referred to COMB) which utilizes 

information from both the TMI and PR. 

The launch of TRMM marked the first time a space-based radar was deployed to 

measure precipitation. The PR provides a three-dimensional space-based view of 

precipitation over the tropics. Traditional ground-based weather radars can also be used 

to measure tropical rainfall since many are located in coastal regions. 



CHAPTER II 

BACKGROUND 

2.1 Microwave Radiative Transfer 

The radiance of an object is defined as the rate of emission of photons per unit area 

per unit solid angle. The radiance of a blackbody, B^, is described by the Planck 

function: 

2hc    1  
^^^^^ = ~ ' .xpihc / AkT) - I  ' ^^^ 

where A is wavelength, T is temperature, h is Planck's constant, k is Boltzmann's 

constant, and c is the velocity of light. For microwave wavelengths (1 mm < A. <300 

mm) and typical temperatures of the Earth (T > 200 K), the radiance is approximately 

linearly proportional to the temperature. This is called the Rayleigh-Jeans 

approximation, where a brightness temperature is defined as the emission of a pure 

blackbody that is defined by a single temperature. 

The microwave radiances observed by a spacebome radiometer are influenced by 

surface characteristics (i.e., land versus water), atmospheric constituents affecting 

absorptivity, and large precipitation drops that scatter microwave radiation. Since this 

study involves microwave measurements over the Pacific Ocean, it is important to 

consider ocean surface characteristics. The emissivity of the ocean's surface depends on 

temperature, salinity, and surface roughness. Overall, in the microwave region, the 

ocean's emissivity is rather low; 0.4 to 0.5 at nadir. This means that oceans appear cold 

relative to its surroundings in microwave images. 



There are three important atmospheric absorbers and emitters of microwave 

radiation: molecular oxygen, water vapor, and liquid water drops. Molecular oxygen 

exhibits many absorption lines near 60 GHz as well as another absorption line at 118 

GHz. Water vapor exhibits an absorption line at 22.235 GHz and at 183 GHz. The third 

important atmospheric absorber, liquid water drops, can be categorized as non- 

precipitating cloud liquid water (NCLW) and rain. Since NCLW drops are smaller than 

the wavelengths of microwave radiation, the Rayleigh approximation may be used. Rain 

drops, however, have diameters comparable to microwave wavelengths. Because of this, 

scattering becomes important and Mie theory can be used to calculate scattering 

properties if the drops are assumed to be spherical (Kummerow et al. 2001), which is a 

widely accepted assumption. 

There are two different types of passive microwave measurements of rainfall: 

scattering and emission. Scattering-based methods depend on the strong scattering of ice 

in upper portions of precipitation regions. Emission-based methods depend on the 

absorption and emission of liquid phase cloud droplets and rain drops. Scattering is 

applicable at frequencies greater than 60 GHz over both land and ocean backgrounds. 

Below 22 GHz and over an ocean background, emission is valid because emission-based 

methods require a radiometrically cold background such as the ocean. Rain has a high 

emissivity (emissivity = 0.9) and appears warm in microwave images. Thus, rain falling 

over the ocean is easily detected because it appears warm against a cold ocean 

background. 



2.2 Spaceborne Weather Radar 

The radar equation describes the average power, P, returned from a sample 

volume: 

-^f^G^V^^ !..„-. (2) 
512 ;T   r   In 2   vol 

In the above equation, Pj is the transmitted power, G is the gain, X is the wavelength, 

6 is horizontal beamwidth, ^ is vertical beamwidth, /? is pulsewidth, r is range, and 

cr^5/ is the backscattering cross section of a single hydrometeor. The variables in the 

numerator are related to radar hardware. The backscattering cross section and the range 

are target characteristics. 

Unlike the radiometer, radar has the ability to sample storms vertically. In 

addition, radar is unaffected by land's high emissivity. These advantages were 

recognized as early as the 1950's (Meneghini and Kozu 1990), but due to cost, weight, 

power, and reliability issues inherent to space-based radar systems, radar was not used in 

space until TRMM was launched in 1997. The limited temporal sampling of a space- 

2 
based radar is insufficient to characterize rain over areas on the order of 100 km   on a 

daily basis. Repeated sampling over many days, however, makes it possible to estimate 

time-averaged rain rates (Meneghini and Kozu 1990). 



CHAPTER III 

RAIN GAUGE, TMI, AND PR 

3.1 Rain Gauge Measurements 

Prior to the use of RM Young rain gauges, mini-optical rain gauges were used on 

TAO buoys in the Pacific warm pool during the Tropical Ocean Global Atmosphere 

Coupled Ocean Atmosphere Response Experiment (TOGA COARE).   Thiele et al. 

(1995) indicate that the mini-optical gauges err on the order of 15 to 20%. Unlike the 

mini-optical gauges, the RM Young self-siphoning rain gauge can be calibrated before 

and after deployment. The transition from mini-optical rain gauges to the RM Young 

gauges occurred from 1995 to 1998 (Serra et al. 2001). 

The rain rate data used in this study are collected in the RM Young Model 

50203-34 rain gauge which is positioned 3.5 m above the ocean surface and has a 

maximum capacity of 500 ml. Once maximum capacity is reached, the gauge empties. 

This self-siphoning process takes place over a 30-second period. A stainless steel rod 

covered by a teflon sheath sits inside the cylindrical collection chamber and acts as a 

probe. The water acts as the outer plate of a capacitor and the metal rod acts as the irmer 

plate. As the water height in the collection chamber increases, the surface area of the 

capacitor increases thus increasing the capacitance. The capacitance is measured and 

converted to water height in the collection chamber. The capacitance is translated to 

frequency. The frequency is then averaged over one-minute intervals, and output 

digitally in counts. To convert to water volume, the equation, 



V =- + b, (3) 
N 

is used, where V is the volume of water in ml, N is the counts, a is in ml-counts, and b 

is given in ml. Both a and b are calibration coefficients found through least-squares 

regression of F on A/""'. To convert volume to accumulations, the siphon events must 

be removed from the data set. During post-deployment processing of the data, three 

minutes of data centered on the siphon event are removed. 

The buoys continuously collect rain data, but only store the one-minute volume 

samples on board while deployed at sea. The daily mean and standard deviation of rain 

rate and the daily percent time raining, which are calculated from the one-minute volume 

data, are sent to PMEL via Service Argos, Inc. Service Argos, Inc. uses NOAA polar 

orbiting weather satellites for data telemetry. Once the data are recovered, the 1-minute 

accumulations are filtered with a 16-minute Manning filter to generate smoothed 10- 

minute accumulations. The 10-minute rain rates are then calculated by differencing the 

10-minute accumulation data and then converting to mm hr"'. 

3.2 TMI Instrument 

The TMI is a nine-channel passive microwave radiometer that is based almost 

entirely upon the Special Sensor Microwave/Imager (SSM/I) which was flown on board 

the Defense Meteorological Satellite Program (DMSP) satellites. The main differences 

between TMI and SSM/I are the addition of a pair of 10.7 GHz channels with both 

horizontal and vertical polarizations and a shift of the water vapor frequency channel 

from 22.235 to 21.3 GHz. This shift is done to avoid the saturation of this channel in the 
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tropics. TRMM also has a higher spatial resolution than the SSM/I due to its lower orbit 

(Kummerow et al. 1998). 

The TMl antenna is an offset parabola with a 61 cm aperture and a focal length 

of 50.8 cm. The antenna beam views the earth's surface at an angle of 49° from nadir, 

resulting in a 52.8° incidence angle at the earth's surface. The data from the TMI come 

from the forward 130° of the circle it traces on the earth's surface. The 130° used for 

data acquisition yields a swath width of 758.5 km. 

3.3 TMI Algorithm 

There are two rainfall retrieval algorithms that are utilized by TMI. One of the 

algorithms is based on the use of emission signatures of the 19.3- and 21.3-GHz 

channels described in Chang et al. (1993) and Wilheit et al. (1991). These distinct 

signatures are used to retrieve rainfall over the ocean since the ocean surface appears 

radiometrically cold to a microwave sensor. The other algorithm is the Goddard 

Profiling Algorithm (GPROF). GPROF is designed to retrieve the instantaneous rain as 

well as the vertical structure of rain. 

GPROF was first detailed in Kummerow et al. (1996). The motivation behind 

developing GPROF was the TRMM mission. There were two important requirements for 

GPROF. One requirement was for it to have simple computations so that it would 

process swiftly. The other requirement was for individual processes within the retrieval 

to be distinct and identifiable so that their effect upon the final result would be known. 
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The overall basis of the algorithm is the Bayesian approach (described later in this 

section). 

The Goddard Cumulus Ensemble (GCE) is used to produce probability density 

functions of rain profiles. Radiative transfer calculations determine the GCE's 

upwelling brightness temperatures which serve to establish the similarity of radiative 

signatures, uhimately providing the probability that an actual profile is observed. 

In this study I use GPROF version 5, which has four main improvements to earlier 

versions. The three improvements related to this study are the following: 1) 

implementation of a more accurate representation of the freezing level (Wilheit et al. 

1991); 2) utilization of new convective-stratiform separation techniques; 3) inclusion of 

emission and scattering indices and the National Environmental Satellite, Data, and 

Information Service (NESDIS) operational rainfall relationship over land. 

Studies using radar to determine the freezing level have shown the resulting 

freezing level to be higher than the climatological freezing level data (Kummerow et al. 

2001). Use of the climatological freezing level data would give erroneously low 

freezing levels, which in turn gives an overestimation of rainfall in the middle and high 

latitudes. In Wilheit et al. (1991), the 19- and 22-GHz channels are used to estimate 

freezing levels. These freezing levels represent the rain layer thickness and the 

atmospheric water vapor content in the radiative transfer model. The updated 

convective-stratiform separation techniques are detailed in Olson et al. (2001). Emission 

and scattering index information are detailed in Petty (1994). 
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In the Bayesian inversion approach, each channel has to be weighted by the 

uncertainty in that channel. This uncertainty is the sum of the uncertainty in the 

measurement and in the forward model. The version 4 GPROF assigned an equal weight 

to all of the channels, while the version 5 GPROF incorporates polarization-based 

emission and scattering indices. This has two advantages: 1) these indices isolate the 

signal coming from the rain cloud itself from the background variability and 2) they are 

monotonic functions of the rainfall emission or ice scattering intensity. They also 

distinguish the effects of scattering from emission-attenuation effects, so that frozen 

hydrometeors can be distinguished from liquid precipitation and cloud. 

GPROF has some weaknesses that are currently being addressed. First, upgraded 

cloud resolving models need to be included in the a priori database since new 

discoveries about the treatment of ice microphysics have been made. Since retrieving 

rainfall is a three-dimensional issue, a three-dimensional Monte Carlo radiative transfer 

calculation will be used in future versions of GPROF instead of the current one- 

dimensional Eddington approximation (Kummerow 1993). In the Monte Carlo 

calculation, the photons are traced backward from the point where the brightness 

temperature is computed to where it is absorbed. It is considered to be emitted at this 

absorption point with the brightness temperature equaling the medium's physical 

temperature (Roberti et al. 1994). Inclusion of the different cloud resolving models and 

different radiative transfer calculation will give explicit treatment of the melting layer. 

In addition consistency between GPROF's physical assumptions and the 

assumptions in the PR algorithm (Viltard et al. 2000). Smaller drops are used in the PR 
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algorithm. There are also different classifications of stratiform versus convective rainfall 

in the two algorithms, plus there is no melting level in GPROF. Data dealing with these 

three issues are currently being analyzed. Another issue that is being investigated is the 

incorporation of realistic simulations of extratropical weather into GPROF. 

3.4 PR Instrument 

Unlike the TMl, the PR is an active microwave sensor. It is a system that 

operates at 13.8 GHz (2.17 cm wavelength) as a 128 element active phased array 

(Kummerow 1998). The PR's pulselength is 1.6 microseconds. The pulses are 

transmitted at a fixed pulse repetition frequency of 2776 Hz giving 64 independent 

samples. It has an effective signal-to-noise ratio of around 4 dB for a 0.7 mm hr    rain 

rate. When the PR is in observation mode it scans in the cross-track direction over +/- 

17°, which is equivalent to a 215 km swath width. 

3.5 PR Algorithm 

The PR algorithm, or 2A25 algorithm, has been generating the version 5 products 

since November of 1999. Data files named 1C21, 2A21, and 2A23 are input into the 

2A25 algorithm. The 1C21 provides the measured vertical profiles of reflectivity factor, 

Z^'s , the 2A21 provides an estimate of path attenuation and 2A23 provides rain type, 

brightband height and freezing level information. Once these data files have been input, 

the 2A25 algorithm estimates the true effective reflectivity factor, Zg, at 13.8 GHz at 

each radar resolution cell from the Z^. 
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The 2A25 first defines the region for processing and selects the range gates 

between the rain top and the lowest height above the surface that is free from clutter. 

The brightband height and the climatological surface atmospheric temperature define the 

different phase states of the precipitation. Initial values of the coefficients in the k-Z^ 

and Zg-R relationships at different ahitudes are defined accordingly. The k is the 

specific attenuation and the R represents rain rate. 

The attenuation correction is based upon a hybrid of the surface reference 

method and the Hitschfeld-Bordan method (Iguchi and Meneghini 1994). The surface 

reference method estimates the path-integrated attenuation (PIA), which is the 

attenuation to the surface, through rain from the decrease in surface return. When the 

wavelength used is small, the signal is attenuated. Hitschfeld and Bordan derived a 

power-law relation between Z and k so that they can be solved for a given fiinction Z^. 

The relationship is: 

k =  a Z/. (4) 

The a and p both represent attenuation by intervening cloud, atmospheric gases and 

precipitation (Hitschfeld and Bordan 1954). This solution gives a reasonable estimate if 

the attenuation effect is small. The coefficient a in the k-Z^ relationship is adjusted so 

that the PIA estimated from the measured Z^ profile by the Hitschfeld-Bordan method 

matches the estimate of PIA from the surface reference method. Attenuation-corrected 

Zg at all ranges are calculated by using the Hitschfeld-Bordan method with the modified 

a. The a-adjustment method assumes that the differences between the PIA estimate 

from the surface reference and that from the measured Z^ profile result from a bad 
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choice of a due to the differences between the assumed and actual drop-size distribution 

(DSD). It also assumes that the radar is properly calibrated and that Z^ is unbiased 

(Iguchi et al. 2000). 

Rain rate is calculated from Zg using 

R = a Z/. (5) 

The variables a and h are functions of the rain type and height of the 0° isotherm and 

storm top (Iguchi et al. 2000). Rain type, bright band, phase state, temperature and 

differences in terminal velocity are taken into account. The initial values of a and h are 

modified according to the adjustment in a so that the k- Zg and Zg -R relationships are 

consistent with one of the two assumed DSD models. One is given for convective 

precipitation and another is given for stratiform precipitation. The coefficient a is 

further modified by the index of nonuniformity. The nonunifrom beamfiUing effect of 

rain on the Zg - R relation is typically less than 5%. In this algorithm, the maximum 

correction is limited to 20%. 

It is important to know the appropriate k- Zg and Zg - R relations in order for an 

algorithm to estimate rain rate without bias. This is made easier because PR is a space- 

based radar, and as a result, the surface reference method can be used. The surface 

reference method allows a narrowing of the DSD. Nonuniform rain distribution within 

the radar resolution cell may become a large error source when the attenuation is severe. 

The algorithm uses a first-order correction to mitigate this problem. The validity of this 

nonuniform beamfiUing correction method is yet to be verified. 



16 

3.6 COMB Algorithm 

The COMB algorithm takes information from the TMl and from the PR. The 

concept behind the algorithm is simple; to utilize the combined strengths of the 

individual instruments. Since PR has a higher resolution than TMI the PR can 

compensate for the TMI in this respect. The TMI can compensate for errors the PR can 

make when estimating integrated quantities. The algorithm is based upon the rain profile 

as indicated by PR's reflectivities while checking consistency with TMI's estimate of 

total attenuation. For data comparisons between the two instruments to be made, both 

data sets are expressed in terms of DSD variables. A Bayesian approach is used to 

condition the a priori probability density function of the DSD variables to the PR and 

TMI measurements (Haddad et al. 1997). 
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CHAPTER IV 

PREVIOUS WORK 

4.1 Rain Gauge 

The first systematic evaluation of the RM Young rain gauge on board the 

ATLAS buoys was carried out by Serra et al. (2001). Errors in rain rate were 

determined by analyzing data from rain gauges as well as through laboratory 

experiments. In that case study, noise is seen as the small fluctuation of rain rate about 

the zero mark. The smallest noise amplitudes were seen during the dry periods. 

Negative rain rates in the data set were generated by random noise. Rain gauge 

observations indicate that negative rain rates occur more frequently during times of 

significant rainfall. Observations also indicate that random noise can occur during times 

of less rainfall, or dry periods. Dry periods are defined as 20-minute periods with no 

more than one value between 0.5 and 3.0 mm hr"' for the 10-minute data. It was 

hypothesized that the observed noise and its dependence on volume could be related to 

the circuit design of the rain gauges. From equation 3, it is implied that tube volume 

resolution is inversely related to counts. Decreases in resolution with increasing volume 

means greater errors in the recorded volumes. Because of this, there will be greater 

errors in the rain rates (Serra et al. 2001). 

The volume measurements were also discovered to be sensitive to the diurnal 

temperature cycle with larger volumes seen for cooler nighttime temperatures, around 

sunrise. The situation was reversed at sunset. The differences between daytime and 

nighttime volume measurements led to differences in rain rate on the order of hundredths 
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of millimeters per hour (Serra et al. 2001). The effect of temperature on volume 

measurements could have been responsible for volume measurements reading high 

during rain events. The measurements stabilized to lower values soon after the rain 

events were over. It was hypothesized that the circuitry was sensitive to temperature, 

and since the circuitry is close to the fill tube this would explain why the volume read 

higher during rain events. If it is assumed that the rain is colder than the ambient air, the 

volume will increase just like in the sunrise situation. Decreases in accumulation during 

the stabilization time can be seen as negative rain rates in the 10-minute data if the 

stabilization times are longer than 10 minutes (Serra et al. 2001). 

To determine the behavior of the rain gauge during periods of significant rain, 

lab experiments were carried out. A constant known flow rate was applied to a rain 

gauge with a mechanical pump accurate to 1%. The results indicate that higher noise 

levels were prevalent around siphon events. This noise was primarily the result of 

nonlinear behavior assumed in the conversion from counts to volumes in equation 3. 

Because siphon events take a short period of time, only 30 seconds, error estimates for 

periods of active accumulation assume these errors are negligible. Overall, noise was 

larger in magnitude during rainy periods; approximately 0.4 mm hr~' (Serra et al. 2001). 

The evaporation rate was also estimated from the data. Evaporation was not 

thought to be a problem since the gauge is protected from the wind and sun. Loss of 

volume due to evaporation was found to be equivalent to about 6 mm in a month. 

Sometimes, a slow increase in accumulation was evident even when there was no rain 

present. This phenomena might be due to either sea spray or electronic drift of some 
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sensors. To estimate possible sea spray contamination, time periods with relatively high 

winds and no rain were analyzed. Results showed no obvious sea spray contamination 

(Serra et al. 2001). 

Few studies have been done to quantify the error induced by wind on rain gauge 

collection efficiency. Most of them have dealt with rain gauges on board ships. Nespor 

and Sevruk (1999) modeled gauge efficiency by looking at how the prescence of a 

cylinder, which creates turbulent flow, affects the volume of drops passing a catchment 

surface area. They found that errors increase with increasing wind speeds, with 

decreasing drop sizes, and with decreasing rain rates. Therefore, light rain events are 

thought to cause more errors due to the wind. Based on this study, it was determined 

that undercatch of rain is expected to be on the order of 10-50% for these rain gauges. In 

the future, there will be a plan to develop a correction specific to these gauges. 

Another recent study was done to compare TRMM satellite rainfall 

measurements to buoy rainfall measurements on several different time and space scales 

(Y.L. Serra, 2001, personal communication). This study looked at rain rates measured 

across 0.1°, 0.2°, 0.5°, 1.0°, 2.5° and 5.0° boxes on daily, monthly and seasonal time 

scales. Results indicate that TMl shows the best agreement in percent time raining with 

the buoys for 0.1° boxes on a daily time scale, while the PR shows large normalized 

biases in percent time raining for all areas for the same time scale. On monthly and 

seasonal time scales, the study indicates that TMl and PR both underestimate heavy rain 

events. When considering rain rate, the PR shows good agreement with the buoys on all 

time scales for the 0.5° boxes. TMI's rain rate agrees best with the buoys' for 1.0° boxes 



20 

on daily time scales and with the 0.1° to 0.5° boxes on monthly and seasonal time scales. 

On daily and monthly time scales, TMI gives greater maximum rain rates than the 

buoys. The PR shows greater maximum rain rates than the buoys on a monthly time 

scale. Overall, TMI and PR measured less total rainfall than the buoys during this study. 

Serra and McPhaden (2002, manuscript submitted to J. Appl. Meteor.) looked at 

measurements of rainfall from TMI, PR, and 14 buoys in heavy rain areas of the tropical 

Pacific and Atlantic. They gathered rainfall information for the daily, monthly, and 

seasonal time scales and over spatial scales ranging from 0.1° to 5.0° squares centered 

on the buoys over a three year period. The results show that both TMI and PR both tend 

to underestimate rain rates as compared to the buoys. This underestimation is found to 

be greatest in the northeast Pacific and the Atlantic. For all time scales, the TMI rain 

rate agrees the best with the buoy rain rate on the 5.0° spatial scale. 

4.2 TMI 

There have been some studies that have been done to validate the GPROF 

algorithm, but they have mostly been done over land. Kummerow et al. (2001) looked at 

20 to 40 rain gauges located on atolls in the Pacific Ocean. The atoll area was divided 

up into 2.5° grid boxes, and only three to four boxes had more than one gauge per box. 

Overall, GPROF was seen to underestimate precipitation by 9% when all of the atoll rain 

gauges were used. The rainfall correlation was 0.85 for this scenario. When grid boxes 

with more than one gauge were used, GPROF overestimated precipitation by 6%. The 

rainfall correlation value, 0.91, was high in this scenario. 
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The Global Precipitation Climatology Centre (GPCC) also did a study involving 

rain gauges (Rudolf et al. 1996). They took data from 6700 rain gauges and interpolated 

it into 0.5° latitude-longitude grid boxes. The data was then averaged over 2.5° grid 

boxes. It was shown that GPROF overestimates precipitation by 17% when compared to 

the rain gauge product. There was a correlation of 0.8 between the two products (Rudolf 

etal. 1996). 

Kummerow et al. (2001) compared output from the GPROF algorithm with a 

ground-based radar located in Kwajalein. The GPROF can distinguish between land, 

which includes coastline, and ocean. This study only considered rainfall accumulations 

made over the ocean. The GPROF underestimated rainfall by 32% when compared to 

the ground-based radar. The correlation between the two products was 0.95. 

4.3 PR 

Comparisons of dBZ distributions between the PR and a WSR-88D radar in 

Melbourne, Florida, were made at 3 km above sea level. PR's data was corrected for 

attenuation using the hybrid approach described in Iguchi et al. (2000). The resulting 

histograms have a very similar distribution. Due to their different effective radar 

reflectivity factor, the PR shows consistently higher dBZ values than the WSR-88D. It 

is estimated that the difference in effective radar reflectivity factor becomes significant 

at 30 dBZ and increases to 2 to 3 dB in the 40 to 50 dBZ range (Iguchi et al. 2000). This 

study demonstrated the utility of Iguchi's hybrid approach. 
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4.4 TMIandPR 

Viltard et al. (2000) used reflectivity output from the PR to create three- 

dimensional profiles of rain to put into a radiative transfer calculation and produce 

simulated brightness temperatures. These simulated brightness temperatures were then 

compared to the actual brightness temperatures as retrieved by the TMI. This allows the 

two instruments' output to be compared. It also allows for the determination of an 

appropriate DSD that would give consistent results between the two instruments. The 

resuks of this method yielded brightness temperature differences of 8 to 10 K, which is 

an error of less than 5%. It is interesting to note that the brightness temperature 

differences were not consistent across all of the channels. 

Kummerow et al. (2001) compare the output of the GPROF algorithm and the PR 

algorithm's output and found that rain rate histograms for individual pixels are very 

similar in shape. Moreover, when rain rates are averaged over 0.5° grids, the resulting 

histograms from GPROF and PR were almost identical. An additional study analyzed 

the vertical structure of rain as derived from TMI and PR. TMI overestimates rain by 

approximately 42 mm at 3 to 4 km above the surface. The correlation coefficient 

between TMI and PR below 4 km is 0.91 above the ocean. 
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CHAPTER V 

DATA AND METHODS 

5.1 Buoy Data 

One of the main data sources in this study is the TAO buoy rain gauge 

measurements. This data is available via the internet on PMEL's website 

(http://www.pmel.noaa.gov/tao/data_deliv/). Rain rates are averaged over 10-minute 

intervals. The report time of the buoy measurement is the midpoint of the 10-minute 

measuring interval. Shortly after TRMM's launch, at the beginning of 1998, the Next 

Generation ATLAS buoys had not fully replaced the Standard ATLAS buoys in the 

TAO array. Since Standard ATLAS buoys did not have the capability to measure 

rainfall, data for this study is taken from 25 Next Generation ATLAS buoys in the 

Pacific Ocean during the period of January 1, 1998 to December 31, 2001. The 

locations of the buoys used in this study are shown in FIG. 1. 

The buoy data is stored in netCDF files, one buoy per file. The files contained date and 

time information and rain rate (in mm hr"'). The files also contain quality codes. A 

code of 0 indicates that data is missing. A data quality code of 1 indicates that pre/post- 

deployment calibrations agree. The default quality code, 2, indicates that pre- 

deployment calibrations were applied. This quality code is the default value for sensors 

that are currently deployed as well as for sensors that were not recovered or sensors that 

were not able to be calibrated upon recovery. The 3 and 4 quality codes indicate that 

pre/post-deployment calibrations differ, original data does not agree with 
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FIG. 1. Locations of Next Generation ATLAS buoys used in the study. 
Negative numbers indicate west longitude and south latitude. 
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other sources, or that the original data are noisy. When the code is 3, the data are 

adjusted to correct the error. In the case of code 4, the data could not be confidently 

adjusted to correct for the error. A code of 5 means that the sensor or tube failed. In this 

study, rain gauge data with quality codes of 1, 2 or 3 are used. 

When the recovered sensor meets the nominal sensor drift criteria of 0.6 mm 

hr"', the quality code is changed from a 2 to a 1. When it does not meet this criteria, the 

quality code becomes 4. This code can later be changed to a 3 or 1 if an adjustment 

based on post-deployment calibrations is made. When the instrument is damaged or lost 

the quality code of 2 is assigned (http://www.pmel.noaa.gov/tao/proj_over/qc.html). 

5.2 Buoy Data Quality Control 

Real-time ATLAS data quality control is performed on a daily, weekly and 

monthly basis. Quality control on a daily basis first begins with flagging the data if they 

fall outside of the error specifications. Then the rest of the data are checked against 

more stringent requirements. The remaining data are flagged if they fall outside the 

smaller range of error specifications. If flagged, the data generate an error alert message. 

This alert signals a data analyst to determine if the flagged data are truly erroneous. 

Differences between TAO data processed at PMEL and the TAO data that are 

transmitted via the Global Telecommunications System (GTS) are investigated and 

corrected (http://www.pmel.noaa.gov/tao/proj_over/qc.html). 

The mean daily rain rate and standard deviation are calculated every week at 

PMEL and are compared to Comprehensive Ocean-Atmosphere Data Set (COADS) 
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climatology. Error alerts occur when percent time raining is above 30% and when the 

rain rate is greater than 4.0 mm hr"^. These alerts are investigated by an error analyst 

and the data are flagged if they are determined to be erroneous. The monthly quality 

control involves plotting the daily averaged rain rate by site for the past 12 months and is 

checked for continuity between deployments. These plots are also compared to COADS 

climatology. 

Computer programs utilize pre-deployment calibrations to analyze raw data. 

These programs check for missing data as well as data that are physically impossible. A 

log of all potential data problems is generated from these programs. Time series plots, 

spectral plots and histograms are generated for all rainfall data. Basic statistics, such as 

the mean, median, standard deviation, variance, maximum and minimum are computed 

for each of the time series. These time series and statistics are analyzed by data analysts. 

Data that stand out in relation to its neighbors, or outliers, are examined closely. The 

mooring deployment and recovery logs are examined at the same time as the suspicious 

data to search for clues, such as a damaged sensor. When all checks have been made, if 

the data are still considered to be erroneous, they are flagged. A three-minute interval 

centered on siphon events is removed from the data set. Random spikes occurring 

during periods of rapid accumulation or surrounding siphon events are removed from the 

data set manually. 

Rain rate calculations are sensitive to the noise in accumulations made over short 

time periods. To remedy this, the 1-minute accumulations are filtered with a 16-point 

Harming filter and rates are then computed at 10-minute intervals. Residual noise in the 
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filtered time series includes false negative rain rates. These negative rain rates rarely 

exceed a few mm hr"', so they are not considered to be problematic 

(http://www.pmel.noaa. go v/tao/proj_o ver/qc .html). 

After the rain gauge is recovered, post-deployment calibrations are made. The 

coefficients resulting from these calibrations are compared to the pre-deployment 

calibration coefficients. The calibration equation uses both the pre-deployment 

calibration coefficients and the post-deployment calibration coefficients separately along 

with a set of input values to generate pre- and post-deployment output values. 

5.3 3G68Data 

The second source of data is the TRMM 3G68 gridded product. These data are 

available from TRMM Science Data and Information System, or TSDIS 

(http://tsdis.gsfc.nasa.gov/trmmopen/index.html). Unlike the buoy data, the 3G68 

product is organized by day instead of by location. Data are provided in 0.5° x 0.5° 

latitude-longitude grid boxes, or cells. The observation time for each grid box is 

recorded to the nearest minute. More than one 3G68 observation may occur in a single 

grid box in one day. The data include retrievals from three different algorithms: the 

TMI, the PR, and the COMB. In addition to the mean rain rate for each algorithm, the 

data set includes the number of pixels TMI, PR and COMB observed, the number of 

rainy pixels observed by TMI, PR and COMB, and the percentage of rain that was 

convective. The 3G68 data span the entire four year period. 
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5.4 Comparison Methods 

Because the TAO buoys are nominally located at longitudes and latitudes 

corresponding to the corners of the 3G68 grid boxes (rather than the centers), the buoy 

data are compared to TRMM area-averaged values for 1.0° x 1.0° boxes centered on 

each of the 25 buoy locations. The 1.0° x 1.0° boxes are composed of four 0.5° x 0.5° 

3G68 grid boxes. Because the buoy rain rate data are averaged over and reported in 10- 

minute intervals, the 1.0° x 1.0° TRMM values are also organized into the same 10- 

minute intervals.   This allows for matching buoy and TRMM rain rate data on spatial 

scales of 1.0° x 1.0° and a time scale of 10 minutes. TRMM measurements are typically 

available between zero and two times per day in each 1.0° x 1.0° box. 

Statistics are presented below for two different subsets of the data. The first 

subset is the OVERLAP subset. For each buoy the overlap period extends from the first 

available day of buoy data to the last available day. During the overlap period for each 

buoy, there are missing data in both the TRMM and buoy records. This subset includes 

a large number of 10-minute observations between the approximately twice-daily 

TRMM fly-overs. FIG. 2 shows the length of the OVERLAP subsets for each buoy. 

The second subset, the MATCH subset, consists of only those 10-minute periods 

where both TRMM and the buoy data are available, including 0.0 mm hr"'. This 

method reduces the buoy data from nominally 144 10-minute measurements per day to 

between 0 and 2 10-minute observations per day . TABLE 1 shows the number of 

observations in each subset. 
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5.5 Statistical Methods 

The mean and the variance are computed for all buoy and TRMM data in the 

OVERLAP and MATCH subsets. Scatterplots of buoy mean rain rate versus the 

respective TRMM instrument mean rain rate are plotted in Chapter 6 for each situation: 

OVERLAP and MATCH. A linear least-squares method is used to fit a line to the 

scatterplot data. This method determines the slope and intercept that minimizes the total 

squared prediction error. The prediction errors are the data's y-value deviations from 

this least-squares line, or regression line. In this experiment, the regression line is used 

to predict the y-values (TRMM rain rate values) from the x-values (buoy rain rate 

values), as the buoy measurements are taken to be ground truth. The estimate of slope 

is: 

A=T^, (6) 
-"xx 

where Sy.y is the sum of x deviations times y deviations, given by: 

S^ = E(x/ -x){yi -y), (7) 

and Sy^^ is the sum of x deviations squared, 

S,^ = Y.{Xi-xf . (8) 
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OVERLAP Time Periods 

1500 

NUMBER OF DAYS 

1. TRMM 
2. 0N110W 
3. ON 125W 
4. ON 140W 
5. ON 165E 
6. ON 170W 
7. ON 180W 
8. 0N95W 
9. 2N 140W 
10.2N 165E 
11.2N95W 
12.2S 140W 
13.2S 165E 
14.2S95W 
15.5N 140W 
16. 5N 165E 
17.5N95W 
18. 5S 140W 
19. 5S 165E 
20.5S95W 
21.8N 125W 
22.8N 165E 
23.8N95W 
24. 8S165E 

FIG. 2. Length of OVERLAP time periods for January-December 1998-2001 for 
TRMM and buoys. 



TABLE 1. Number of OVERLAP and MATCH observations. The values in the 
# column refer to the legend values in FIG. 2. 
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OVERLAP MATCH 

# Lat Long Buoy TMl PR COMB TMI PR COMB 

2 0°N 110° W 100354 866 349 349 828 334 334 

3 0°N 125° W 149490 1347 535 535 1236 491 491 

4 0°N 140° W 154950 1456 575 575 1285 515 515 

5 0°N 165°E 101456 1659 656 656 837 335 335 

6 0°N 170° W 17276 138 55 55 138 55 55 

7 0°N 180° W 78860 860 332 332 656 258 258 

8 O^N 95° W 85860 731 291 291 703 281 281 

9 2°N 140° W 70498 588 236 236 584 236 236 

10 2°N 165° E ] 66657 1663 662 662 1374 557 557 

11 2°N 95° W 49637 415 163 163 414 163 163 

12 2°S 140° W 18139 151 61 61 151 61 61 

13 2°S 165° E 78919 1457 575 575 653 254 254 

14 2°S 95° W 22951 277 110 110 193 76 76 

15 5°N 140° W 141359 1182 469 469 1178 467 467 

16 5°N 165° E ] [58767 1694 662 662 1324 523 523 

17 5°N 95° W 47973 413 161 161 412 160 160 

18 5°S 140° W 50485 423 163 163 423 163 163 

19 5°S 165° E 110102 1446 571 571 923 363 363 

20 5°S 95° W 57775 614 242 242 483 191 191 

21 8°N 125° W 16268 139 53 53 139 53 53 

22 S^'N 165° E 88323 978 381 381 743 294 294 

23 S^'N 95° W 44901 1007 405 405 388 154 154 

24 8°S 165° E 186600 1682 656 656 1577 623 623 

25 8°S 95° W 49429 424 168 168 421 167 167 

26 90 p^ 140° W 87649 757 302 302 753 299 299 
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The estimate of the intercept is: 

h = y- k^ (9) 

Since the regression Une is a predicted line, there is some inherent uncertainty. 

2 
This uncertainty is the sample mean squared prediction error and is represented by s^ . 

In order to determine s^, the residuals are calculated. The residuals are simply the 

prediction errors in the sample and are given by the actual values minus the predicted 

values. 

residuals = yj -y, (10) 

The sample mean squared prediction error is 

i:(yi-yif 
^/=^ :r- (11) n -2 

where n is the number of data points in the sample. In this case, n equals 25 so the 

degrees of freedom are 23 assuming that the stations are independent of one another. 

The square root of 5/ is called the standard error of estimate. It estimates the standard 

deviation of the sample y-values associated with the given x-values. About 95% of the 

prediction errors will fall within 2 standard deviations of the mean error (Ott and 

Longnecker 2001). 

The confidence interval for both the slope and intercept is the estimate plus or 

minus the test statistic from a Student's t-distribution times the standard error. The 

confidence interval for the slope is given by: 

^all^sJ— /^\ ± fallU— (12) 



33 

The confidence interval for the intercept is given by: 

[^ 

To determine a 95% confidence interval in both cases, alpha will equal 0.05. The 

degrees of freedom necessary to find the t-value is 23. 

The sample correlation coefficients are calculated for each scatterplot. The 

correlation coefficient indicates the strength of the linear relation between the x-values 

(buoy) and the y-values (TRMM). The equation for the sample correlation is: 

-"xy 
'yx  ~    ~ 

■^'^xx^yy 

where 

r„. = -r^^= (14) 

Syy = i:iyi-yf (15) 
i 

Overall the sample correlation coefficient will be positive if y increases as x increases. 

The average error of the sample correlation coefficient is given by: 

<T,=^-j^, (16) 

where n represents sample size. 
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CHAPTER VI 

RESULTS 

6.1 OVERLAP Subset 

FIG. 3 shows the mean rain rate from TRMM versus the rain rates for each buoy. 

Rain rates range from 0.002 mm hr"' (17.52 mm yr"') to 0.424 mm hr"' (3714.24 mm 

yr~'). The OVERLAP mean rain rate data can be found in Appendix B. The 

OVERLAP mean data set gives very high correlation coefficients and low average errors 

for the TMl, PR and COMB cases (FIG. 3). The correlation coefficient values are 

around 0.9 for all three cases. The null hypothesis in this case is that the buoy and 

TRMM rain rates are equal. The TMI versus buoy's 95% confidence interval on the 

slope contains 1.0 (TABLE 2) which indicates that the null hypothesis cannot be rejected 

at this level for the TMI. The confidence intervals on the slope for the PR and COMB 

do not contain 1.0. The null hypotheses is rejected for the PR and COMB at the 95% 

level. 

6.2 MATCH Subset 

Due to the smaller sample size, the scatter of the MATCH subset is greater than for the 

OVERLAP subset (FIG. 4). Rain rates range from -0.014 mm hr"' (-122.64 mm yr"') to 

0.621 mm hr"' (5439.96 mm yr"'). The MATCH mean rain rate data can be found in 

Appendix B. The TMI versus buoy case has a 0.93 correlation coefficient. The 

MATCH subset also gives high correlation coefficients for both the PR and COMB 

cases, although these coefficients are lower than for the OVERLAP subset. The 
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correlation coefficient values are 0.80 and 0.79, respectively. Another significant 

finding is that the TMI's 95% confidence interval on the slope contains 1.0 (TABLE 2). 

Since the null hypothesis is the same as in the OVERLAP subset, it is not rejected for 

the TMI case. The confidence interval on the slope from the PR and COMB product do 

not contain 1.0, therefore, the null hypothesis is rejected for the PR and COMB products 

at the 95% level. 



36 

a)   TMI vs. Buoy Mean 
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FIG. 3. Scatterplots of OVERLAP (a) TMI mean rainfall rate (mm hr "^; ordinate) vs. 
buoy mean rainfall rate (mm hr "'; abscissa); (b) as in (a), but PR mean rainfall 
rate vs. buoy mean rainfall rate; (c) as in (a), but COMB mean rainfall rate vs. buoy 
mean rainfall rate. The dotted line represents the best-fit line. 
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FIG. 4. Same as in FIG. 3, but for the MATCH subset. 
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TABLE 2. Statistics information for the OVERLAP and MATCH subsets. 

r Avg 
error 
ofr 

Sample 
Standard 
Deviation 

Slope 95% CI 
on Slope 

Intercept 95% CI 
on Intercept 

OVERLAP 
MEAN 
PLOTS 

TMI vs 
Buoy 

w§ iiili 0.084 iiiiii ;||i|||||||[ 0.01 (-1.11,1.14) 

PRvs 
Buoy 

•:|8|:: iiiiii' 0.089 iiiii [lllllllll^^^ 0.02 (-1.11,1.14) 

COMB vs 
Buoy 

"mi llllll 0.109 iiiiii ylllllllll 0.03 (-1.09,1.16) 

MATCH 
MEAN 
PLOTS 

TMI vs 
Buoy 

>93 V':iil! :;||v:;Q.i;o|| 9WM:-i (0.79,1.12) mffmsM (-1.08,1.10) 

PRvs 
Buoy 

,80 MM:\ $LiM-'^M MilS^i (0.31,0.61) ;iit::;§04:: (-0.85, 0.92) 

COMB vs 
Buoy 

.79;; IfO.Qll .:';||f.3|5;i: :<|i:.52|| (0.35, 0.70) mm^s:; (-0.83, 0.93) 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The purpose of this ground truth study was to determine how well TRMM- 

observed rain rates compared to buoy rain rate measurements. The buoy measurements 

were taken as ground truth. The TMI, PR and COMB rain rate products from TRMM 

were compared with buoy rain rate measurements from capacitance-type rain gauges on 

board the Next Generation ATLAS buoys. The rain rates were matched into 10-minute 

windows. TRMM data were averaged over 1.0° x 1.0° boxes centered on twenty-five 

different buoy locations across the Pacific Ocean. 

This study looked at data from a four-year period beginning in January of 1998 

and ending in December of 2001. All rain rate measurements from both TRMM and the 

buoy data sets comprise the OVERLAP subset of data. All of the mean rain rate 

measurements from the OVERLAP time period were statistically compared to one 

another. Then, all rain rate measurements that were observed at the same time by both 

the buoy and TRMM were used as a second source of data comparison (MATCH 

subset). 

The mean rain rates for the OVERLAP and MATCH time periods were plotted 

against each other: TMI versus buoy, PR versus buoy, and COMB versus buoy. The 

best fit line, correlation coefficient, and the 95% confidence intervals on the slopes were 

calculated for each case. The confidence interval on the slope for the TMI versus buoy 

case in the OVERLAP and MATCH subset contained the value of one. From this 

observation, it is concluded that the TMI rain rate measurements showed no bias as 
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compared to the buoy rain rate measurements. The PR and COMB cases underestimated 

rain rates as compared to the buoy rain rate measurements. 
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ACRONYMS AND ABBREVIATIONS 
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ABBREVIATION 

ATLAS 

COADS 

dB 

DMSP 

DSD 

ESMR 

GCE 

GMT 

GPCC 

GPROF 

GTS 

IR 

NASA 

NASDA 

NCLW 

NESDIS 

NOAA 

PIA 

DEFINITION 

Autonomous Temperature Line Acquisition System 

Comprehensive Ocean-Atmosphere Data Set 

decibels 

Defense Meteorological Satellite Program 

Drop-size distribution 

Electrically Scanning Microwave Radiometer 

Goddard cumulus ensemble 

Greenwich Mean Time 

Global Precipitation Climatology Centre 

Goddard profiling algorithm 

Global Telecommunications System 

Infrared 

National Aeronautics and Space Administration 

National Space Development Agency 

non-precipitating cloud liquid water 

National Environmental Satellite, Data, and 
Information Service 

National Oceanic and Atmospheric Administration 

path-integration attenuation 
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ABBREVIATION 

PMEL 

PR 

SSM/I 

TAO/TRITON 

TM 

TOGACOARE 

TRMM 

TSDIS 

VIRS 

DEFINITION 

Pacific Marine Environmental Laboratory 

Precipitation Radar 

Special Sensor Microwave/Imager 

Tropical Atmosphere-Ocean/Triangle Trans-Ocean 
Buoy Network 

TRMM Microwave Imager 

Tropical Ocean Global Atmosphere Coupled Ocean 
Atmosphere Response Experiment 

Tropical Rainfall Measuring Mission 

TRMM Science Data and Information System 

Visible and Infi-ared Radiometer System 
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APPENDIX B 

RAIN RATE TABLES 

TABLE 3. Mean rain rate data (mm hr"') plotted in FIG. 3. 

Latitude Longitude 

0°N 110°W 
0'=N ns-'w 
0°N 140°W 
0°N 165°E 
0°N 170°W 
0°N 180°W 
0°N 95°W 
2°N 140°W 
2°N 165°E 
2°N 95°W 
2°S 140°W 
2°S 165°E 
2°S 95°W 
5°N 140°W 
5°N 165°E 
5°N 95°W 
5°S 140°W 
5°S 165°E 
5°S 95°W 
8°N 125°W 
8°N 165°E 
8°N 95°W 
8°S 165°E 
8°S 95°W 
9°N 140°W 

Buoy TMI PR          COMB 

.003 .004 .027 .028 

.024    , .110 .049 .063 

.005 .006 .005 .007 

.089 .052 .039 .050 

.021 .010 .04 .059 

.031 .019 .02 .026 

.015 .009 .016 .024 

.023 .019 .018 .022 

.154 .160 .111 .130 

.052 .048 .044 .048 

.002 .001 .003 .002 

.124 .092 .067 .072 

.045 .063 .102 .114 

.098 .094 .048 .064 

.315 .366 .224 .28 

.232 .205 .068 .11 
.07 .038 .044 .05 

.288 .232 .204 .231 

.028 .110 .096 .127 

.002 .010 .013 .015 

.304 .291 .199 .223 

.160 .281 .249 .297 

.368 .40 .334 .345 

.059 .075 .076 .194 

.424 .394 .29 .33 
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TABLE 4. Mean rain rate data (mm hr  ) plotted in FIG. 4 

MATCH MATCH MATCH 
TMI PR COMB 

ude Longitude Buoy TMI Buoy PR Buoy COMB 

0°N 110°W .005 .004 .002 .029 .002 .029 

0°N 125'»W .050 .121 .018 .053 .018 .068 
Q°N 140°W -.001 .005 .001 .005 .001 .006 
0°N 165°E .110 .025 .13 .024 .13 .03 
0°N 170°W -.014 .010 -.011 .042 -.011 .059 
0°N 180°W .038 .02 -.009 .018 -.009 .023 

0°N 95°W .014 .009 .016 .016 .016 .025 

2°N 140°W .074 .02 .17 .018 .17 .022 

2°N 165°E .124 .148 .17 .096 .173 .111 

2°N 95°W .056 .048 .032 .045 .032 .048 

2°S 140°W -.001 .001 .001 .003 .001 .002 

2°S .     165°E .182 .058 .245 .054 .245 .053 
2°S 95''W .032 .084 .012 .148 .012 .166 
5°N 140°W, .074 .093 .037 .047 .037 .063 
5°N 165°E .287 .362 .281 .217 .281 .271 
5°N 95°W .242 .205 .210 .068 .210 .11 
5°S 140°W .023 .038 .05 .044 .05 .05 
5°S 165°E .174 .281 .204 .227 .20 .257 
5°S 95°W .01 .084 -.004 .086 -.004 .113 

8°N 125°W .026 .010 .009 .013 .009 .015 
8°N 165°E .258 .275 .221 .22 .221 .244 

8°N 95°W .405 .358 .60 .288 .6 .356 

8°S 165°E .391 .411 .304 .332 .304 .344 

8°S 95°W .067 .076 .059 .076 .059 .195 

9°N 140°W .395 .390 .621 .292 .621 .332 
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